ECE 307 - Techniques for Engineering Decisions

FINAL REVIEW

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

PROBLEM 7.27

We use the following notation for this problem car A : outcome that the car is behind door A and analogous definitions for car B and car C
\square Then,

$$
P\{\operatorname{car} A\}=P\{\operatorname{car} B\}=P\{\operatorname{car} C\}=\frac{1}{3}
$$

which indicates that for the car to be behind any one of the 3 doors is equally likely
\square I pick door A and the host knows where the car is; the possible outcomes are:

PROBLEM 7.27

(i) car is behind door C

$$
P\{\text { host picks door } B \mid \text { car } C\}=1
$$

(ii) car is behind door \boldsymbol{A} that I picked as my choice
$\boldsymbol{P}\{$ host picks door $B \mid$ car $A\}=$

$$
P\{\text { host picks door } C \mid \text { car } A\}=\frac{1}{2}
$$

(iii) car is behind door B

$$
\boldsymbol{P}\{\text { host picks door } B \mid \text { car } B\}=0
$$

PROBLEM 7.27

Now

$$
\begin{array}{r}
\boldsymbol{P}\{\text { car } C \mid \text { host picks door } B\}= \\
\frac{P\{\text { car } C \text { and host picks door } B\}}{P\{\text { host picks door } B\}}=
\end{array}
$$

Therefore, you should switch when the host reveals the goat

PROBLEM 9-24

We define $\underset{\sim}{Q}$ to be the r.v. representing market share with values in $[0,1]$

We are given

$$
P\{\underset{\sim}{Q}>0.22\}=P\{\underset{\sim}{Q}<0.08\}=0.1
$$

and

$$
P\{\underset{\sim}{Q}>0.14\}=P\{\underset{\sim}{Q}<0.14\}=0.5
$$

PROBLEM 9.24

Therefore

$$
\begin{aligned}
\boldsymbol{P}\{\mathbf{0 . 0 8}<\underset{\tilde{Q}}{\boldsymbol{Q}}<\mathbf{0 . 1 4}\} & =\boldsymbol{P}\{\underset{\sim}{\boldsymbol{Q}}<\mathbf{0 . 1 4}\}-\boldsymbol{P}\{\underset{\sim}{\boldsymbol{Q}}<\mathbf{0 . 0 8}\}=\mathbf{0 . 4} \\
\boldsymbol{P}\{\mathbf{0 . 1 4}<\underset{\sim}{\boldsymbol{Q}}<\mathbf{0 . 2 2}\} & =\boldsymbol{P}\{\underset{\tilde{Q}}{\boldsymbol{Q}}>\mathbf{0 . 1 4}\}-\boldsymbol{P}\{\underset{\tilde{\boldsymbol{Q}}}{ }>\mathbf{0 . 2 2}\} \\
& =\boldsymbol{P}\{\underset{\sim}{\boldsymbol{Q}}<\mathbf{0 . 2 2}\}-\boldsymbol{P}\{\underset{\sim}{\boldsymbol{Q}}<\mathbf{0 . 1 4}\} \\
& =\mathbf{0 . 4}
\end{aligned}
$$

\square We pick $n=40, r=6$ and obtain beta distribution data from the tableau in the Appendix

PROBLEM 9.24

Also,

$$
E\{\underset{\sim}{Q}\}=\frac{r}{n}=\frac{6}{40}=0.15
$$

\square However,

$$
P_{\beta}\{\underset{\sim}{Q} \leq 0.1441 \mid n=40, r=6\}=0.5
$$

and therefore,

$$
P_{\beta}\{\underset{\sim}{Q} \leq 0.15 \mid n=40, r=6\}>0.5
$$

PROBLEM 9.26

\square The inheritance can be invested entirely in Mac or in USS and we are given that

$$
P\{\text { invested in } M a c\}=0.8
$$

and so

$$
P\{\text { invested in } U S S\}=0.2
$$

Each year return on investment is normal with

$$
\begin{aligned}
& {\underset{\sim}{\text { Mac }}}^{\sim} \sim \mathscr{N}(\mathbf{1 4 \%}, \mathbf{4 \%}) \\
& {\underset{\sim}{R}}^{\boldsymbol{R}_{U S}} \sim \mathcal{N}(12 \%, 3 \%)
\end{aligned}
$$

and the yearly returns are independent r.v.s.

PROBLEMS 9.26 (a)

We compute then

$$
\begin{aligned}
& P\{.06<\underset{\sim}{\boldsymbol{R}}<.18 \mid \text { investment in Mac }\} \\
& =P\left\{\frac{.06-.14}{.04}<\underset{\sim}{\boldsymbol{Z}}<\frac{.18-.14}{.04}\right\} \\
& =P\{-2<\underset{\sim}{\boldsymbol{Z}}<1\} \\
& =0.8185
\end{aligned}
$$

PROBLEMS 9.26 (a)

\square Similarly

$$
\begin{aligned}
& P\{.06<\underset{\sim}{\boldsymbol{R}}<.18 \mid \text { investment in } \boldsymbol{U S S}\} \\
& =P\left\{\frac{6-\mathbf{1 2}}{\mathbf{3}}<\underset{\sim}{\boldsymbol{Z}}<\frac{\mathbf{1 8}-\mathbf{1 2}}{.3}\right\} \\
& =\boldsymbol{P}\{-\mathbf{2}<\underset{\sim}{\boldsymbol{Z}}<2\} \\
& =0.9544
\end{aligned}
$$

PROBLEM 9.26 (b)

Then, the unconditional probability is

$$
\begin{aligned}
P & \{6<\underset{\sim}{\boldsymbol{R}}<\mathbf{1 8}\}=\boldsymbol{P}\{6<\underset{\sim}{\boldsymbol{R}}<\mathbf{1 8} \mid \text { Mac }\} \\
P & P \text { Mac }\}+ \\
& P\{6<\underset{\sim}{\boldsymbol{R}}<\mathbf{1 8} \mid \boldsymbol{U S S}\} \boldsymbol{P}\{\boldsymbol{U S S}\} \\
= & \mathbf{0 . 8 1 8 5 (0 . 8)}+\mathbf{0 . 9 5 4 4}(\mathbf{0 . 2}) \\
= & \mathbf{0 . 8 4 5 6 8}
\end{aligned}
$$

PROBLEM 9.26 (c)

We are given $P\{\underset{\sim}{\boldsymbol{R}}>12\}$ and wish to compute
$P\{$ investment in $M a c \mid \underset{\sim}{R}>12\}$
\square We compute

$$
\begin{aligned}
P\{\underset{\sim}{R}>12 \mid M a c\}=P\left\{\underset{\sim}{Z}>\frac{12-14}{4}\right\} & =P\{\underset{\sim}{Z}>-0.5\} \\
& =0.6915
\end{aligned}
$$

and
$P\{\underset{\sim}{R}>12 \mid \boldsymbol{U S S}\}=P\left\{\underset{\sim}{Z}>\frac{12-12}{3}\right\}=P\{\underset{\sim}{Z}>0\}$ $=0.5$

PROBLEM 9.26 (c)

- Then $P\{\operatorname{Mac} \mid \underset{\sim}{R}>12\}=$

$$
\begin{aligned}
& \frac{P\{\underset{\sim}{R}>12 \mid M a c\} P\{M a c\}}{P\{\underset{\sim}{R}>12 \mid M a c\} P\{M a c\}+P\{\underset{\sim}{R}>12 \mid U S S\} P\{U S S\}} \\
& =\frac{(0.6915)(0.8)}{(0.6915)(0.8)+(0.5)(0.2)} \\
& =0.847
\end{aligned}
$$

We are given that

Then,

$$
P\{M a c\}=P\{\boldsymbol{U S S}\}=\mathbf{0 . 5}
$$

$\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}}\}=\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}} \mid \boldsymbol{M a c}\} \boldsymbol{P}\{\boldsymbol{M a c}\}+\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}} \mid \boldsymbol{U S S}\} \boldsymbol{P}\{\boldsymbol{U S S}\}$
$0.13=0.5\{0.14+0.12\}$
and
$\operatorname{var}\{\underset{\sim}{\boldsymbol{R}}\}=(\mathbf{0 . 5})^{2} \operatorname{var}\{\underset{\sim}{\boldsymbol{R}} \mid \operatorname{Mac}\}+(\mathbf{0 . 5})^{2} \operatorname{var}\{\underset{\sim}{\boldsymbol{R}} \mid \boldsymbol{U S S}\}$
$=0.25\left\{(0.04)^{2}+(0.03)^{2}\right\}$
$0.0625=(0.5)^{2}(0.5)^{2} \Rightarrow \sigma_{R}=0.25$
ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROBLEM 9.31 (a)

We know that the length r.v.

$$
\underset{\sim}{L} \sim \mathscr{N}(5.9,0.0365)
$$

We compute
$P\left\{\right.$ not fit in a $6^{\prime \prime}$ envelope $\}=P\{\underset{\sim}{\boldsymbol{L}}>\mathbf{5 . 9 7 5}\}$

$$
\begin{aligned}
& =P\left\{\underset{\sim}{Z}>\frac{5.975-5.9}{0.0365}\right\} \\
& =P\{\underset{\sim}{Z}>2.055\} \\
& =0.02
\end{aligned}
$$

PROBLEM 9.31 (b)

\square We have a box with $n=20$ and a failure occurs whenever an envelope does not fit into a box:

$$
P\{\text { no fit }\}=P\{\underset{\sim}{L}>5.975\}=0.02
$$

. From the binomial distribution for $n=20$ with $q=0.02$ we compute the $\boldsymbol{P}\{2$ or more no fits \}

The event of two or more no fits in a population of 20 is the event of $\mathbf{1 8}$ or less fits

PROBLEM 9.31 (b)

$$
\boldsymbol{P}\{\text { fit }\}=\mathbf{1 - P}\{\text { not fit }\}=\mathbf{0 . 9 8}
$$

$$
\text { out of } 20=1-P\{\underset{\sim}{\hat{\boldsymbol{R}}} \leq 1\}
$$

$$
=1-0.94
$$

binomial (20; 0.02)

$$
=0.06
$$

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROBLEM 9.31 (b)

The interpretation of the . 06 is as follows: we
have the result that we expect, on average, that
6% of the boxes contain 2 or more cards that do
not fit the envelopes

9.34

\square On average, 7.5 people arrive in 30 minutes since

$$
\frac{30 \mathrm{~min}}{4 \mathrm{~min} / \text { person }}=7.5 \text { persons }
$$

and so we have the number of arriving people $\underset{\sim}{X}$ as an r.v. with

$$
\underset{\sim}{X} \sim \operatorname{Poisson}(m=7.5)
$$

\square A simplistic way to solve the problem is to view the individual 40% preference of each arriving

9.34

person to be independent of the arrivals and then treat the number of arriving persons who prefer the new recipe as a r.v. $\underset{\sim}{P}$ with mean $(40 \%)(7.5)=3$ and so

$$
\underset{\sim}{P} \sim \operatorname{Poisson}(m=3)
$$

\square Table look up produces

$$
\boldsymbol{P}\{\underset{\sim}{P} \geq 4\}=0.353
$$

9.34

A more rigorous approach is to treat the performance of each arrival as a binomial

$$
\underset{\sim}{X}=\text { number of arrivals in } 30 \text { minutes } \sim \operatorname{Poisson}(m=7.5)
$$

\square Each arrival \boldsymbol{i} has a preference $\underset{\sim}{\boldsymbol{P}} \boldsymbol{f}$ for new recipe with

$$
\underset{\sim}{\boldsymbol{P}_{i}} \sim \operatorname{binomial}(n=\underset{\sim}{X}, p=0.4)
$$

9.34
\square We need to compute $P\left\{\sum_{i} \underset{\sim}{P} \geq 4\right\}$

\square We condition over the number of arrivals

$$
\begin{aligned}
& \boldsymbol{P}\left\{\sum_{i} \underset{\sim}{\boldsymbol{P}} \geq \mathbf{4}\right\}=\sum_{n=1}^{\infty} \boldsymbol{P}\left\{\sum_{i=1}^{n} \underset{\sim}{\boldsymbol{P}} \geq \mathbf{4} \mid \underset{\sim}{\boldsymbol{X}} \geq \boldsymbol{n}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{X}}=\boldsymbol{n}\} \\
& =P\left\{\sum_{i=1}^{4} \underset{\sim}{P} \geq 4 \mid \underset{\sim}{X} \geq 4\right\} P\{\underset{\sim}{X}=4\}+ \\
& \boldsymbol{P}\left\{\sum_{i=1}^{5} \underset{\sim}{\boldsymbol{P}} \geq 4 \mid \underset{\sim}{X} \geq \mathbf{X}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{X}}=\mathbf{5}\}+ \\
& \boldsymbol{P}\left\{\sum_{i=1}^{\boldsymbol{6}} \underset{i=1}{\boldsymbol{P}} \geq \mathbf{4} \mid \underset{\sim}{\boldsymbol{X}} \geq \mathbf{6}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{X}}=\mathbf{6}\}+\ldots
\end{aligned}
$$

9.34

Note that $P\left\{\sum_{i=1}^{n}{\underset{\sim}{i}}^{P} \geq 4 \mid \underset{\sim}{x} \geq 4\right\} \boldsymbol{P}\{\underset{\sim}{X}=n\}$ is simply
the binomial distribution value with parameters
$(n, 0.4)$ and $P\{\underset{\sim}{X}=n\}$ is the Poisson distribution
value with $m=7.5$

The sum has insignificant contributions for $n>16$
ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.12: PROBLEM FORMULATION

This is a multi-period planning problem with a 7month horizon

Define the following for use in backward regression

O stage: a month in the planning period
O state variable: the number of crankcases $\boldsymbol{S}_{\boldsymbol{n}}$ left over from the stage $(n-1), n=1,2, \ldots, N$ with $S_{7}=0($ initial stage $)$ and S_{0} unspecified

10.12: PROBLEM FORMULATION

O decision variables: purchase amount $\boldsymbol{d}_{\boldsymbol{n}}$ for stage $n, n=1,2, \ldots, 7$

O transition function: the relationship between the amount in inventory, purchase decision and demand in stages n and ($n-1$)

$$
S_{n-1}=S_{n}+d_{n}-D_{n} \quad n=1,2, \ldots, N
$$

where,

$$
D_{n}=\text { demand at stage } n \quad n=1,2, \ldots, N
$$

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.12: PROBLEM FORMULATION

return function: costs of purchase in stage \boldsymbol{n} plus the inventory holding costs, with the mathematical expression

$$
f_{n}^{*}\left(S_{n}\right)=\underbrace{C_{n}}_{\text {costs of lot size ordered }}+\left(S_{n}+d_{n}-D_{n}\right)+\underbrace{f_{n-1}^{*}}_{\text {per unit inventory charges }}\left(S_{n-1}\right)
$$

and

$$
f_{0}^{*}\left(S_{0}\right)=0
$$

10.12: STAGE 1 SOLUTION

$$
\begin{aligned}
D_{1} & =600 \\
f_{1}^{*}\left(S_{1}\right) & =\min _{d_{1}}\left\{C_{1}+\left(S_{1}+d_{1}-D_{1}\right) 0.50\right\}
\end{aligned}
$$

S_{1}	value of f_{1} for d_{1}				${ }^{*}\left(S_{1}\right)$	d_{1}^{*}
	0	500	1000	1500		
0			5200	7950	5200	1000
100		3000	5250	8000	3000	500
200		3050	5300	8050	3050	500
300		3100	5350	8100	3100	500
400		3150	5400	8150	3150	500
500		3200	5450	8200	3200	500
600	0	3250	5500	8250	0	0

10.12: STAGE 2 SOLUTION

$D_{2}=1200$
$f_{2}^{*}\left(S_{2}\right)=\min _{d_{2}}^{*}\left\{C_{2}+\left(S_{2}+d_{2}-D_{2}\right) 0.50+f_{1}^{*}\left(S_{2}+d_{2}-D_{2}\right)\right\}$

S_{2}	value of f_{2} for d_{2}					${ }^{*}\left(S_{2}\right)$
	0	500	1000	1500	d_{2}^{*}	
0				10750	10750	1500
100				10850	10850	1500
200			10200	10950	10200	1000
300			8050	7800	7800	1500
400			8150		8150	1000
500			8250		8250	1000
600			8350		8350	1000

10.12: STAGE 3 SOLUTION

$$
D_{3}=900
$$

$$
f_{3}^{*}\left(S_{3}\right)=\min _{d_{3}}\left\{C_{3}+\left(S_{3}+d_{3}-D_{3}\right) 0.50+f_{2}^{*}\left(S_{3}+d_{3}-D_{3}\right)\right\}
$$

S_{3}	value of f_{3} for d_{3}				${ }^{*}\left(S_{3}\right)$	d_{3}^{*}
	0	500	1000	1500		
0			15900	1690	1000	
100			15300		15300	1000
200			12950		12950	1000
300			12350		13350	1000
400		11050	13500		11050	500
500		13900	13650		13650	1000
600		13300			13300	500

$D_{4}=400$						
$f^{*}\left(S_{4}\right)=\min _{d_{4}}\left\{C_{4}+\left(S_{4}+d_{4}-D_{4}\right) 0.50+f^{*}\left(S_{4}+d_{4}-D_{4}\right)\right\}$						
S_{4}	value of f_{4} for d_{4}				$f_{4}^{*}\left(s_{4}\right)$	d_{4}^{*}
	0	500	1000	1500		
0		18350	18600		18350	500
100		16050			16050	500
200		16500			16500	500
300		14250			14250	500
400	15900	16900			15900	0
500	15350	16600			15350	0
600	13050				13050	0

10.12: STAGE 5 SOLUTION

$$
D_{5}=800
$$

$$
f_{5}^{*}\left(S_{5}\right)=\min _{d_{5}}\left\{C_{5}+\left(S_{5}+d_{5}-D_{5}\right) 0.50+f_{4}^{*}\left(S_{5}+d_{5}-D_{5}\right)\right\}
$$

S_{5}	value of f_{5} for d_{5}				${ }_{5}^{*}\left(S_{5}\right)$	\boldsymbol{d}_{5}^{*}
	0	500	1000	1500		
0			21600		21600	1040
100			19400		1000	
200			21100		21100	1000
300		21350	20600		20600	1000
400		19100	18350		18350	1000
500		19600			19600	500
600		17400			17400	500

10.12: STAEESNONTM						
$D_{6}=1100$						
$f^{*}\left(S_{6}\right)=\min _{d_{6}}\left\{C_{6}+\left(S_{6}+d_{6}-D_{6}\right) 0.50+f^{*}\left(S_{6}+d_{6}-D_{6}\right)\right\}$						
S_{6}	value of f_{6} for d_{6}				$f_{6}^{*}\left(S_{6}\right)$	d_{6}^{*}
	0	500	1000	1500		
0				26050	26050	1500
100			26650	27350	26650	1000
200			24500	25200	24500	1000
300			26250		26250	1000
400			25800		25800	1000
500			21300		21300	1000
600		24600	20650		20650	1000

10.12: STAGE 7 SOLUTION

For stage $7, D_{7}=700$ and
$\boldsymbol{f}_{7}^{*}\left(\boldsymbol{S}_{7}\right)=\min _{d_{7}}\left\{\boldsymbol{C}_{7}+\left(\boldsymbol{S}_{7}+\boldsymbol{d}_{7}-D_{7}\right) \mathbf{0 . 5 0}+\boldsymbol{f}_{6}^{*}\left(\boldsymbol{S}_{7}+\boldsymbol{d}_{7}-D_{7}\right)\right\}$
Optimal total cost over 7 months $=\$ \mathbf{3 1 , 4 0 0}$
obtained using the purchasing policy below

month	$\mathbf{1}$	2	3	4	5	6	7
amount of material	1000	1000	1000	0	1000	1500	500

12.7: OIL WILDCATTING PROBLEM: DECISION TREE

12.7: BLOCK DIAGRAMS

12.7 EVPI AND EVII

We evaluate the expected value of the clairvoyant information

$$
E V P I=\underbrace{E M V(\text { clairvoyant })}_{\$ 19 k}-\underbrace{E M V(\text { drill })}_{\$ 10 k}=\$ 9 k
$$

\square We have the following conditional probabilities
$P\{"$ good" \mid oil $\}=0.95$ and $P\{$ "poor" $\mid d r y\}=0.85$
\square We are also given that

$$
P\{d r y\}=0.9 \text { and } P\{o i l\}=0.1
$$

\square We can find P \{"good"\} and P \{"poor" $\}$ with the

12.7 EVPI AND EVII

law of total probability

$$
\begin{gathered}
P\{" \text { good" }\}=P\{\text { goood"| oil }\} P\{\text { oil }\} \quad+ \\
P\{\text { good" } \mid d r y\} P\{d r y\}= \\
(0.95)(0.1)+(0.15)(0.9)=0.23 \\
P\{\text { "poor" }\}=1-P\{" \text { good" }\}=1-0.23=0.77
\end{gathered}
$$

[^0]
12.7 EVPI AND EVII

Now we can find

$$
\begin{aligned}
P\left\{\text { oil }\left.\right|^{\prime \prime} \text { good }^{\prime \prime}\right\} & =\frac{P\left\{{ }^{\prime \prime} \text { good }^{\prime \prime} \mid \text { oil }\right\} P\{\text { oil }\}}{\left[\begin{array}{l}
P\left\{{ }^{\prime \prime} \text { good }^{\prime \prime} \mid \text { oil }\right\} P\{o i l\}+ \\
P\left\{{ }^{\prime \prime} \text { good }^{\prime \prime} \mid \text { dry }\right\} P\{d r y\}
\end{array}\right]} \\
& =\frac{(0.95)(0.1)}{(0.95)(0.1)+(0.15)(0.9)} \\
& =0.41 \\
P\left\{\left.d r y\right|^{\prime \prime} \text { good }^{\prime \prime}\right\} & =1-P\left\{\left.o i l\right|^{\prime \prime} \text { good }^{\prime \prime}\right\}=0.59
\end{aligned}
$$

12.7 EVPI AND EVII

and

$$
\begin{aligned}
P\left\{\text { oil }\left.\right|^{\prime \prime} \text { poor' }^{\prime}\right\} & =\frac{P\left\{{ }^{\prime \prime} \text { poor }^{\prime \prime} \mid \text { oil }\right\} P\{\text { oil }\}}{\left[\begin{array}{l}
P\left\{{ }^{\prime} \text { poor' }^{\prime} \mid \text { oil }\right\} P\{\text { oil }\}+ \\
P\left\{{ }^{\prime \prime} \text { poor' }^{\prime} \mid \text { dry }\right\} P\{\text { oil }\}
\end{array}\right]} \\
& =\frac{(0.05)(0.1)}{(0.05)(0.1)+(0.85)(0.9)} \\
& =0.0065
\end{aligned}
$$

[^0]: ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

